Table of Contents

Module: PlanarEmbedding ./PlanarEmbedding.py
Imported modules   
from DataStructures import Stack
from PlanarityTest import *
from copy import deepcopy
from tkMessageBox import showinfo
Functions   
FPP_PlanarCoords
Schnyder_PlanarCoords
load_graph
  FPP_PlanarCoords 
FPP_PlanarCoords ( G )

Algorithm: 1. Triangulate orginal graph 2. Canonical order all vertices 3. Initialize x,y coordinates and M for V1,V2, and V3 v1.M={v1,v2,v3} v2.M={v2} v3.M={v2,v3} 4. In the canonical order, for each vertex 1. find the vertices on the outface in order 2. shift vertices in the subset M of Wp+1 and Wq 3. calculate the x,y coordinates of Vk+1 4. updating M for all the outface vertices wi.M=wi.M+{vk+1} for i<=p vk+1.M=wp+1.M+{vk+1} wj.M=wj.M for j>=q

  Schnyder_PlanarCoords 
Schnyder_PlanarCoords ( G )

Algorithm: 1. Triangulate orginal graph 2. Canonical order all vertices 3. Normal label interior edges of G to i->Ti (i=1,2,3) 4. Calculate for each interior vertex v pathi : vertices on the i-path from v to v1, v2, or vn pn : number of vertices on the i-path starting at v ti : number of vertices in the subtree of Ti rooted at v ri : number of vertices in region Ri(v) for v 5. Calculate barycentric representation for each v: vi'=ri - pi-1 v->(v1',v2',v3')/(n-1) A barycentric representation of a graph G is an injective function v->(v1,v2,v3) that satisfies: a.) v1+v2+v3=1 for all v b.) for each edge (x,y) and each vertex z not x or y, there is some k (k=1,2 or 3) such that xk < zk and yk < zk

  load_graph 
load_graph ( InGraph )

Classes   
pe_Edge
pe_Graph
pe_Node
pe_Point

Table of Contents

This document was automatically generated on Fri Mar 15 11:15:02 2002 by HappyDoc version 2.0